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Geo-fencing, as a spatial join between points (moving objects) and polygons (spatial range), is widely used
in emerging location-based services to trigger context-aware events. It faces the challenge of real-time
processing a large number of time-variant complex polygons, when points are constantly moving. Following
the filter-and-refine policy, in our previous work, we proposed to organize edges per polygon in hash tables to
improve the performance of the refining stage. The number of edges, however, is uneven among buckets. As a
result, some points that happen to match big buckets with many edges will have much longer responses than
usual. In this article, we solve this problem from two aspects: (i) Constructing multiple parallel hash tables
and dynamically selecting the bucket with fewest edges and (ii) sorting edges in a bucket so as to realize
the crossing number algorithm by binary search. We further combine the two to suggest a hybrid hashing
scheme that takes a better tradeoff between real-time pairing points with polygons and system overhead
of building hash tables. Extensive analyses and evaluations on two real-world datasets confirm that the
proposed scheme can effectively reduce the pairing time in terms of both the average and distribution.
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1. INTRODUCTION

Advancements in mobile technologies have led to ubiquitous communications, which
enable users to connect to the Internet all the time. Meanwhile, techniques of satellite
positioning [Misra and Enge 2010] and indoor localization [Chintalapudi et al. 2010]
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are integrated into smartphones as well. Location information of latitude and longi-
tude, however, is not directly meaningful to most applications. Instead, finding user’s
semantic location, or context, by matching their coordinates with electronic maps is
a key function. For example, mentioning a user’s current location as Tokyo Disney-
land is more meaningful than 35.6328◦N, 139.8806◦E. Many Location-Based Services
(LBS), especially context-aware ones [Baldauf et al. 2007] that can automatically adapt
operations to current user context, have recently been introduced to communication
systems.

Geo-fencing [Küpper et al. 2011] plays an important role in the context detection
of LBS. Here, a virtual geo-fence is defined for a spatial range of interest with a
polygon specifying the geographic boundary of the range.1 An event is automatically
triggered and sent to predetermined targets when a user (point) enters or leaves the
geo-fences. Geo-fencing has many promising applications [Bareth et al. 2010; Martin
et al. 2011; Reclus and Drouard 2009] and is already exploited in different systems (e.g.,
Foursquare, Placecast, Sensewhere, Zentracker). The users (points) may constantly
move and generate continuous spatial data streams. In some scenarios, the geo-fences
are fixed. For example, in kid safety tracking, parents preset several ranges (e.g., school,
nearby parks) as safe areas for their children and are notified when their children leave
these ranges. In other scenarios such as mobile advertising (a store dynamically adjusts
its advertising range based on the current number of customers), flooding areas, and
volcanic eruption cordons, the geo-fences change with time.

Geo-fencing is used to detect whether a point (user) is inside or within a certain
distance of a polygon (which forms the geo-fence); in other words, it pairs a point against
a polygon. It is a special form of spatial join [Jacox and Samet 2007] between points
and polygons. Spatial join deals with general spatial objects (polygons) and typically
uses the filter-and-refine policy. (i) In the filtering stage, a spatial join is performed on
the approximations (e.g., Minimum Bounding Rectangles [MBR]) of objects. (ii) In the
refining stage, rough results found in the filtering stage are examined with full objects
using the plane-sweep technique [Preparata and Shamos 1985]. Most previous works
[Nobari et al. 2013], including the query indexing method [Prabhakar et al. 2002],
focused on the filtering stage. As for geo-fencing, the filtering stage is similar to that
of a spatial join. In the refining stage, INSIDE detection can be realized by either the
Crossing Number (CN) algorithm [Shimrat 1962] or the winding number algorithm
[Hormann and Agathos 2001]. Because polygons may contain many edges (vertices) to
accurately represent a spatial range of interest, the computation cost via either scheme
in the refining stage is a big burden.

Due to the increasing importance of geo-fencing, a task was posed by the ACM
SIGSPATIAL GIS Cup 2013 [Ravada et al. 2013] as a contest, aiming at finding efficient
algorithms. Out of 29 submitted algorithms, three [Zhou et al. 2013; Yu et al. 2013a; Li
et al. 2013] were selected as the best in terms of overall performance in both accuracy
and execution speed. The three selected papers share some similar ideas, all using
R-tree [Guttman 1984] to organize the MBRs of polygons for the filtering stage. In the
refining stage, Zhou et al. [2013] used interval indexing for managing the edges of a
polygon, whereas edge-based hashing is used in Yu et al. [2013a], and the two methods
have similar performance [Ravada et al. 2013].

This article extends our previous work [Yu et al. 2013a] on pairing points with poly-
gons and further improves the indexing design for managing the edges of polygons
in the refining stage. Organizing edges of a polygon in a hash table helps to reduce
the computation cost. However, a well-known problem of hashing [Indyk and Motwani
1998; Yu et al. 2013b] is the bias of samples in the buckets. This problem becomes

1It is also possible to use the coverage of wireless cells (e.g., iBeacon) to specify geo-fences.
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serious when many edges are located in a few buckets, which not only degrades the
efficiency of indexing, but also leads to much longer response times for some users. We
analyze the distribution of the number of edges per bucket and the properties of edges
inside a bucket. On this basis, we propose a hybrid hashing scheme. Our contribution
is twofold: (i) Multiple, parallel hash tables are constructed to store edges of polygons,
and selection diversity2 [Neasmith and Beaulieu 1998] is applied to dynamically find
the most proper bucket (with fewest edges) for each point. (ii) Large buckets are split
into atomic sub-buckets, where edges are sorted in order. This enables the efficient
implementation of the CN algorithm via binary search. Extensive analyses and evalu-
ations on two real-world datasets confirm that the proposed scheme effectively reduces
the pairing time and achieves a better tradeoff between real-time pairing points with
polygons and system overhead of updating polygons. This scheme can be applied to dif-
ferent LBS to ensure a fast response even in the presence of a large number of complex
geo-fences.

The article is organized as follows: Section 2 briefly reviews some related work on
moving object databases, range query, and indexing techniques for geo-fencing. The
proposed algorithm is discussed in detail in Section 3. We introduce the framework,
and describe the two main techniques of bucket selection and sorting edges. On this
basis, we suggest a hybrid hashing scheme and theoretically analyze its performance.
Experimental results of execution time and storage are shown in Section 4. Finally,
Section 5 concludes the article.

2. RELATED WORK

With the advancement of positioning techniques and wireless communications, moving
objects (people with smartphones, vehicles) can measure their locations and report
to servers in a cloud. In the cloud, a database can be used to manage this location
information. For example, a scalable location-aware data stream server is implemented
on top of a data stream management system [Mokbel et al. 2005]. To facilitate LBS, it
is also necessary to provide location-dependent queries [Ilarri et al. 2010] on moving
objects. Range query [Xu and Wolfson 2003; Wu et al. 2006] is such an example, finding
among a large number of moving objects those that are in the spatial ranges of interest.

Moving objects databases [Theodoridis 2003; Wolfson and Mena 2004; Güting and
Schneider 2005] extend database technology to support the representation and query
of moving objects in databases and tracks the trajectories of objects by timestamp.
Spatio-temporal indexing techniques are suggested to facilitate fast spatial access
to moving objects. For example, a time-parameterized bounding rectangle is used to
approximate the trajectory of moving objects and is organized in a time-parameterized
R-tree [Saltenis et al. 2000]. An alternative way is STRIPES, which is based on dual
transformation [Patel et al. 2004]; that is, representing moving objects (a trajectory
with start point and velocity) in two dimensions as a static point in four dimensions
(position and velocity). These two schemes are further experimentally evaluated in
Sowell et al. [2013].

Building an index for moving objects and using spatial ranges as queries often suffer
from frequent index updates because of the object’s continuous motion. When the
query ranges are relatively stable, an alternative method is to reverse the role of range
queries and moving object data: More specifically, to build a query index [Prabhakar
et al. 2002] (e.g., an R-tree) for spatial ranges. Moving objects associated with each
range are found initially, and incremental adjustment is performed to check whether
a moving object still matches the spatial range. Velocity-constrained indexing is used
to reduce the number of index updates on moving objects by using an old index, but

2Selection diversity is a typical technology used in wireless communications to mitigate channel fading.
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expanding the MBRs of the query range based on the moving distance of objects. A
similar idea is suggested in Cheema et al. [2011] for continuous monitoring of objects,
where a distance-based range query is not re-evaluated if the query remains within a
safe zone.

Our work studies geo-fencing, where the predicates INSIDE and WITHIN have simi-
lar meanings as “enclosure” and “nearness” defined for a spatial join. More specifically,
geo-fencing is similar to range query on a moving object database. But, in geo-fencing,
polygons are stored in the database and points are used as queries. In addition, com-
plex polygons with many edges may be used to accurately represent geo-fences. In a
general and formal definition of the geo-fencing problem, both a point (user) and a
polygon (geo-fence) may be moving and thus have multiple instances. In other words,
the geo-fences depend on situations [Pongpaichet et al. 2013]. Each instance (of points
and polygons) is identified by a unique ID and has a timestamp. A geo-fence may have
holes inside it; therefore, a polygon contains one outer ring and zero or more inner
rings to exclude the holes. Geographically, multiple geo-fences may be near to each
other, and a point may simultaneously appear in several overlapping polygons.

Most previous works on geo-fencing (and spatial joins), including query indexing
[Prabhakar et al. 2002], focus on the filtering stage. In the refining stage, INSIDE
detection relies on the CN algorithm [Shimrat 1962] or the winding number algorithm
[Hormann and Agathos 2001]. The former counts the number of edges intersected
by a ray starting from the point and moving toward any direction,3 and the latter
computes the point’s winding number with respect to the polygon. Our investigation
shows that a polygon in the dataset provided by GIS Cup’13 and in our own dataset
can be composed of hundreds of edges. Hence, examining all edges via either algorithm
in an exhaustive way is prohibitively expensive, and it is difficult to directly use these
techniques to realize a real-time geo-fencing service with a large number of complex
polygons.

Compared with previous works, we focus on the refining stage of geo-fencing. Geo-
fencing has two main predicates: INSIDE and WITHIN. In the refining stage, a
WITHIN predicate is divided into two steps: (i) First deciding whether a point is inside
a polygon. (ii) If this point is not inside the polygon, the distance of the point to each
edge of the polygon needs to be computed. Because this is the same as in our previous
work [Yu et al. 2013a], we only focus on the INSIDE predicate in this article.

Different indexing methods [Zhou et al. 2013; Yu et al. 2013a; Li et al. 2013] have
been introduced to reduce the computation cost of the CN algorithm so that only some
edges of a polygon are examined for each point. Points and polygons are represented
in Cartesian coordinates.4 A polygon Poly consists of an ID (Poly.ID), a timestamp
(Poly.time), and multiple rings with edges. The x-coordinate of a polygon spans a
range [xmin, xmax). In the edge-based hashing scheme [Yu et al. 2013a], this range is
equally divided into N sub-ranges [x0, x1), [x1, x2), . . . , [xN−1, xN), where xi = xmin +� · i,
� = (xmax − xmin)/N. The subrange [xi, xi+1) is associated with the ith bucket Bi. An
edge whose x-range overlaps [xi, xi+1) is stored in Bi. In this way, an edge can appear
in multiple adjacent buckets. Assume a point P consists of an ID (P.ID), a timestamp
(P.time), and a 2-D coordinate (P.x, P.y). With �(P.x − xmin)/�� as the hash key, only
edges in the associated bucket are examined by the CN algorithm. A similar method,
where edges are organized via an interval index, is suggested in Zhou et al. [2013].

3We consider a moderate area where the space containing geo-fences can be approximated by a 2D plane.
4It is easy to convert the latitude/longitude obtained from a GPS receiver to a local Cartesian coordinate. We
also confirmed that latitude/longitude can be directly used for the INSIDE predicate, and used to approxi-
mately compute the distance for the WITHIN predicate.
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Fig. 1. System framework of geo-fencing.

Because the bucket width is not constant, it takes more time to locate a bucket via a
pre-built index.

The edges of a polygon are not evenly distributed in all buckets. Therefore, points
matching big buckets with many edges will have a long pairing time, which will lead
to a longer response time than usual. Our aim is to reduce the response time under the
worst case, so that the response time of each user satisfies the real-time requirement.

Our contribution mainly lies in improving the performance of the refining stage of
geo-fencing, and it can be used together with previous works suggested for the filtering-
stage (e.g., R-tree). Researchers tried to leverage the processing power of the Graphics
Processing Unit (GPU) for the INSIDE test [Zhang and You 2012]. Our indexing-based
implementation of the CN algorithm can also run on the GPU for better performance.

3. PROPOSED ALGORITHM

Figure 1 shows our framework of geo-fencing, using mobile advertising as an example.
The mobile phone of user A (e.g., a customer) periodically reports his ID and coordinate
to a server. User B (e.g., a Starbucks store) registers to the server. The server holds the
tuples of <semantic location, polygon, user list>, where semantic location (e.g., a store,
user B), polygon defining the range, and user list (user A, a customer ever visited the
store) are provided by user B (the store). The server keeps tracking the coordinates of
user A and performs INSIDE detection. If user A changes from OUTSIDE the polygon
to INSIDE the polygon, context-aware processing will take place based on the setting
(e.g., a message “User A gets near to the store” will be sent to user B). Then, user B can
send a welcome message together with special discount information to attract user A.
The range is periodically updated, and its setting depends on the number of customers
present in the store.

In typical geo-fencing applications, point positions are changed much more frequently
than those of polygons. Taking this into account, we try to build hash tables for polygons
during system spare time and shift some computation cost from the refining stage
(which has a real-time requirement) to this spare time. The cost of building hash
tables is justified by the fact that hash tables, once built, can be used for many points.

Our framework is composed of two main parts, as follows:
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Fig. 2. Effect of the ray direction in the crossing number algorithm.

—Polygon management. Polygons of geo-fences are stored in two structures with dif-
ferent details. MBRs of polygons, as rough approximations of polygons, are stored in
an R-tree5 [Guttman 1984], the same as in Zhou et al. [2013] and Li et al. [2013].
Edges of a polygon are stored in hash tables. To facilitate the update of polygons,
each polygon has its own hash tables. Multiple hash tables are used in parallel.
Inside a hash table, a large bucket is split into sub-buckets and sorted, and these
buckets/sub-buckets are organized in a bucket tree.

—Pairing engine. In the filtering stage, R-tree is used to quickly detect whether a point
is inside the MBR of any polygon. When a point is inside the MBR of a polygon,
buckets in all tables associated with the point are found, and the one with fewest
edges is selected. Then, a scheme corresponding to the hash policy is used to perform
the CN algorithm (binary search if edges in this bucket are sorted and exhaustive
search of all edges in this bucket otherwise) that determines whether the point is
really inside the polygon.

3.1. Bucket Selection

The basic edge-based hashing policy equally divides the x-coordinate range of a polygon,
as shown in Figure 2(a). The number of edges in each bucket, however, varies with
buckets; for example, BN−1 has more edges than BN−2, and it will take more time to
perform the CN algorithm for a point in BN−1 than another point in BN−2. Accordingly,
there might be a long tail in the distribution of the number of edges.

In Figure 2(a), bucket boundaries and the ray for crossing detection are parallel to
the vertical axis. Actually, the CN algorithm can be implemented in any direction. Or
alternatively, the ray and bucket boundaries are fixed to the vertical direction, but the
polygon and point are rotated counter-clockwise by an angle α. With the same point
P, organizing the edges of the polygon in buckets shown in Figure 2(b) leads to fewer
edges in the bucket associated with P.

We investigated the Complementary Cumulative Distribution Function (CCDF)
of the number of edges per bucket on the dataset provided by GIS Cup’13, apply-
ing different rotation angles. The results are shown in Figure 3, where 0 degrees,
45 degrees, 90 degrees, and 135 degrees correspond to the cases of α = 0, α = 45,
α = 90, and α = 135 degree, respectively. We also investigated the potential worst case
(upper bound) and best case (lower bound) by exhaustively iterating rotation angles.
According to Figure 3, it is clear that there might be a long tail in the distribution of

5R-tree is used as a simple example for the filtering stage. Other state-of-the-art methods can be used as
well.
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Fig. 3. CCDF of the number of edges per bucket under different rotation angles of polygons (based on the
dataset of GIS Cup’13).

Fig. 4. CCDF of the number of edges examined per point under different combinations of rotation angles: 0
for ‘#Hash=1’, 0 and 90 for ‘#Hash=2’, 0, 60 and 120 for ‘#Hash=3’, and 0, 45, 90, 135 for ‘#Hash=4’ (based
on the dataset of GIS Cup’13).

the number of edges compared with the lower bound. Although the lower bound of the
distribution of edges does exist for each polygon, it is time-consuming to rotate each
polygon, not to mention the huge time it takes to find the optimal rotation angle.

In the design of locality sensitive hashing [Indyk and Motwani 1998], usually mul-
tiple parallel hash tables are used. A similar idea can be leveraged here, although a
little differently. We construct for a polygon parallel hash tables, each with all edges. In
this way, we realize selection diversity [Neasmith and Beaulieu 1998] as follows: The
most suitable bucket is found for each incoming point. Specifically, with a given point,
one bucket is found from each table, and the bucket with fewest edges is used in the
CN algorithm.

Figure 4 shows the distribution of the number of edges under bucket selection. The
rotation angles of polygons are 0 for ‘#Hash=1’, 0 and 90 for ‘#Hash=2’, 0, 60 and 120
for ‘#Hash=3’, and 0, 45, 90, 135 for ‘#Hash=4’. When there are more than two hash
tables, the number of edges in the selected bucket depends on the actual positions of
points. Therefore, we divide the MBR of a polygon into grid points and use them to
obtain the distribution of the number of edges. As shown in Figure 4, the number of
edges examined for each point greatly decreases when there are more hash tables. The
biggest gain occurs when the number of hash tables increases from one to two, and the
extra gain diminishes as more hash tables are used.
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Fig. 5. CCDF of the number of edges examined per point under optimal combination of rotation angles for
different numbers of hash tables (based on the dataset of GIS Cup’13).

Fig. 6. Sorting edges inside a bucket according to the coordinates of crossing points along a vertical line.

In comparison with the results in Figure 4, we also investigated the optimal combi-
nations of rotation angles by iterating all possible combinations. The results are shown
in Figure 5. There is a large difference between the two figures when there are only
one or two hash tables. But the difference diminishes at three or four tables.

Rotating a polygon by 0 degree means using the x coordinate of the polygon for hash
design, while rotating 90 degrees is equivalent to using the y coordinate. Finding the
number of crossings in a direction other than horizontal or vertical, however, is time-
consuming. Fortunately, the simple combination of two hash tables in the horizontal
and vertical directions in Figure 4 has satisfactory performance. We will exploit other
methods to further enhance its performance.

3.2. Sorting Edges inside a Bucket

Using an interval index to organize edges in Zhou et al. [2013] is equivalent to non-
equally dividing the x coordinate range of a polygon. More specifically, bucket bound-
aries are determined by the vertices of a polygon, as shown in Figure 6. We find that
there are some good properties in such cases: (i) Any line passing a point associated
with the bucket and parallel to the vertical axis crosses all edges in the bucket. For ex-
ample, any vertical line in the range of B5 crosses four edges. (ii) The relative relations
between all crossing points intersected by any vertical line in a bucket are the same, re-
gardless of the position of the crossing line. For example, C1, C2, C3, C4 are the crossing
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Fig. 7. Hybrid hash policy: Most buckets have a regular width and can be directly located by hash values.
Some big buckets are split into atomic sub-buckets with irregular width where edges are sorted.

points along the vertical line passing P1. The relationship C1.y < C2.y < C3.y < C4.y
does not change with the position of P1, if only P1 is in the range of B5. In this way, we
can sort all edges in a bucket using the y coordinate of crossing points along a vertical
line. This is called SortEdge hereafter.

Organizing all edges in a bucket in an ordered list facilitates crossing detection. For
example, in Figure 6, four edges split the strip area corresponding to B5 into five regions
R0, R1, . . . , R4. By comparing the coordinate P1.y against C1.y, C2.y, . . . , C4.y, we can
find the index of the region where P1 is located. This region index is nothing but the
number of crossings by the ray starting from P1 and moving along the negative vertical
axis. Now, instead of examining all edges in the bucket, a binary search [Cormen et al.
2009] is sufficient to compute the region index of the point. However, it should be noted
that the CN algorithm via binary search comes at the cost of building hash tables, as
discussed in Section 4.

3.3. Hybrid Hashing Policy

Constructing buckets by equally dividing the x coordinate range of a polygon facilitates
locating buckets. But the effect of bucket selection is limited when there are only two
tables because there may be some blind areas where a point matches two buckets
both having many edges. On the other hand, constructing buckets by using vertices of
polygons as bucket boundaries enables us to sort all edges in a bucket, but it needs an
extra index to locate a bucket. In addition, it is more time-consuming to build the hash
tables.

We adopt a hybrid policy to combine the two schemes, as shown in Figure 7. Generally,
we equally divide the coordinate range of a polygon to construct buckets. For each
bucket, if its number of edges is below a threshold, it is left untouched so as to both
facilitate indexing and reduce the time it takes to build hash tables; otherwise, the
bucket is divided into sub-buckets where edges are sorted.

—Compared with the bucket selection-only scheme, large buckets are split and sorted.
This reduces the pairing time for a large bucket at the cost of increased time for
building hash tables.
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ALGORITHM 1: Update Polyj , the jth polygon.
1: procedure UPDATEPOLYGON(Polyj)
2: Get MBR (Xmin, j, Xmax, j, Ymin, j, Ymax, j) of Polyj .
3: Add this MBR to R-tree.
4: for αk in the set of rotation angles do
5: BuildTable(Polyj , αk). � Build kth table.
6: end for
7: end procedure
8: procedure BUILDTABLE(Polyj , αk)
9: Rotate Polyj counter-clockwise by αk.

10: Get Xmin, j, Xmax, j of rotated polygon.
11: � j = (Xmax, j − Xmin, j)/N. � Bucket width.
12: for each edge (V1, V2) in Polyj do
13: n1 = GetHashKeyk(V1.x).
14: n2 = GetHashKeyk(V2.x).
15: Add (V1, V2) to Bk

n, n = n1, . . . , n2.
16: end for
17: for each bucket Bk

n do
18: if |Bk

n | is no more than a threshold then
19: Bk

n .type is set to Regular.
20: else � Split buckets.
21: Bk

n.type is set to Irregular.
22: Get x coordinates of all vertices.
23: Build sub-buckets Bk

nl.
24: for each edge (V1, V2) in Bk

n do.
25: Remove edge (V1, V2) from Bk

n.
26: Add (V1, V2) to bucket Bk

nl, l = l1, . . . , l2.
27: end for
28: Sort edges inside bucket Bk

nl.
29: end if
30: end for
31: end procedure

—Compared with SortEdge, small buckets can still be directly located by their hash
values, and sorting is avoided.

In other words, there are two kinds of buckets: One is a nonsorted bucket with few
edges, and the other is a sorted bucket with more edges. We use this hybrid design to
achieve a better tradeoff between pairing points with polygons and the system overhead
of building hash tables.

In the hybrid hashing scheme, polygons are organized by Algorithm 1. Basically,
MBRs of polygons are stored in an R-tree (Lines 2–3). Then, with each rotation angle,
a hash table is built for the polygon (Lines 4–6).

When building the kth hash table, the polygon is rotated counter-clockwise by an an-
gle αk. Then, parameters (Xmin, j, Xmax, j corresponding to leftmost and rightmost points,
and � j corresponding to the bucket width) for the hash table are found (Lines 10–11).
For each edge with two vertices V1 and V2, a range of hash values, n1, . . . , n2, is deter-
mined by the two ends of this edge (Lines 13–14), and this edge is added to each bucket
associated with a hash value between n1 and n2 (Line 15). After creating the basic hash
table, a bucket Bk

n is assigned a type Regular (Line 19) if its number of edges is no more
than a threshold. Otherwise, it is assigned a type Irregular (Line 21) and is further split
into multiple sub-buckets Bk

nl (Lines 22–23) using the vertices of edges as sub-bucket
boundaries. Then, each edge in the bucket is added to the sub-buckets (Lines 24–27).
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ALGORITHM 2: INSIDE detection.
1: procedure INSIDE(Point set S)
2: Clear candidate point set Cj, j = 1, . . . , M.
3: for each point P in S do
4: Perform R-tree detection.
5: Add P to Cj if P is in the MBR of Polyj .
6: end for
7: for each point P in Cj, j = 1, . . . , M do
8: inPoly = IsInside(P, Polyj).
9: if inPoly is true then

10: Export (P.ID, P.time, Polyj .ID, Polyj .time).
11: end if
12: end for
13: end procedure
14: procedure ISINSIDE(P,Polyj)
15: for αk in the set of rotation angles do
16: Rotate point P counter-clockwise by αk.
17: nk = GetHashKeyk(P.x).
18: end for
19: Select a bucket k = argmink|Bk

nk
|.

20: if Bk
nk

.type is Regular then
21: cross = 0.
22: for each edge (V1, V2) in bucket Bk

nk
do

23: if V 1.x ≤ P.x ≤ V 2.x then
24: s = (V2.y − V1.y)/(V2.x − V1.x).
25: dy = (P.y − V1.y) − s · (P.x − V1.x).
26: if (dy < 0) then cross = cross + 1.
27: end if
28: end if
29: end for
30: inPoly=cross is odd.
31: else
32: Find the sub-bucket Bk

nkl.
33: Perform binary search to find region index of P.
34: inPoly = region index of P is odd.
35: end if
36: end procedure

Finally, edges in the same sub-bucket are sorted in terms of the y-coordinate of the
crossing points along a vertical line.

The actual INSIDE detection is performed in batch mode on a point set S with almost
the same timestamp using Algorithm 2. Each of the M polygons has a separate buffer
Cj . For each point P ∈ S, its candidate polygons are found via R-tree, and the point
is added to the buffers of these polygons (Lines 2–6). Then, for each candidate pair
(P, Polyj), INSIDE detection is performed (Line 8), and a matched pair is exported
(Lines 9–11).

In the hash-based CN algorithm (IsInside), first, a hash value for each hash table is
computed based on the coordinates of P (Lines 15–18), and the associated buckets are
B1

n1
, B2

n2
, . . .. From these candidate buckets, the bucket Bk

nk
with fewest edges is selected

(Line 19): There are two cases. (i) If this bucket is Regular, for all edges inside it, only
the ones on top of P are counted (Lines 23–28). P is regarded as inside the polygon if
the number of the crossing is odd. (ii) If this bucket is Irregular, the sub-bucket actually
holding P is found. In that sub-bucket, a binary search is used to find the region index
of P. P is regarded as inside this polygon if its region index is odd-numbered.
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Fig. 8. CCDF of the number of edges examined per point by different hashing schemes (2 hash tables, based
on the dataset of GIS Cup’13).

Fig. 9. CCDF of the number of edges examined per point by different hashing schemes (three hash tables,
based on the dataset of GIS Cup’13).

The distributions of the number of edges examined per point are studied un-
der different numbers of hash tables. Here, we compare the basic bucket selection
scheme (#Hash=n(Sel)) with fixed rotation angles, the optimal bucket selection scheme
with refined rotation angles (#Hash=n(OptSel)), and the hybrid hashing scheme
(#Hash=n(Hybrid)). The CCDF results are shown in Figures 8, 9, 10, where n is equal
to 2, 3, 4, respectively. The basic bucket selection is inferior to the optimal bucket
selection, although their difference diminishes as more hash tables are used. The com-
bination of bucket selection and sorting edges in the hybrid scheme always achieves
the best performance.

3.4. Analysis of the Hashing Schemes

Here, we compare different hashing schemes: (1) Hash, the basic hashing scheme [Yu
et al. 2013a]; (2) MultiHash, multiple hash tables with bucket selection, as discussed
in Section 3.1; (3) SortEdge, sorting edges inside each bucket with an irregular bucket
width, as discussed in Section 3.2; and (4) Hybrid, the hybrid hashing scheme suggested
in Section 3.3.

As shown in Table I, one table is used in the Hash and SortEdge schemes, and
multiple hash tables are used in the MultiHash and Hybrid schemes. In the Hash
scheme, the x coordinate range is equally divided to construct buckets, and a bucket can
be directly located by its hash key. But within each bucket, all edges have to be examined
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Fig. 10. CCDF of the number of edges examined per point by different hashing schemes (4 hash tables,
based on the dataset of GIS Cup’13).

Table I. Properties of Different Hashing Schemes for INSIDE Detection

Tables Building Tables Locating Bucket CN Algorithm
Hash 1 Short 1 #edge
MultiHash #table Medium #table min (#edge)
SortEdge 1 Long log2(#vertex) log2(#edge)
Hybrid #table Medium #table min(log2(#edge))

exhaustively to perform the CN algorithm. In the MultiHash scheme, selecting the
bucket with fewest edges reduces the cost of the CN algorithm to the minimal number
of edges (min(#edge)). In the SortEdge scheme, locating a bucket depends on the interval
index, and the computation cost is the log value (log2(#vertex)) of the number of vertices
in a polygon. Performing the CN algorithm via the binary search on the sorted edges
reduces the cost to the log value of the number of edges in a bucket (log2(#edge)). The
Hybrid scheme combines MultiHash and SortEdge, and, in the ideal case, the number
of examined edges can be reduced to log2(min(#edge)) = min(log2(#edge)), which is
actually a lower bound.

It should be noticed that reducing the time of the CN algorithm comes at the cost
of increasing the time for building hash tables. When building hash tables, the Hash
scheme takes a short time while the SortEdge takes a long time to order edges inside
each bucket. Multiple hash tables are constructed in the MultiHash scheme, and some
of the buckets are further split and sorted in the Hybrid scheme. Therefore, the two
schemes take a medium time to build the hash tables. We discuss this furhter in the
experiment evaluation.

3.4.1. Effect of Bucket Selection. Assume the Probability Density Function (PDF) of the
number of edges (X) in buckets is fX(x) for one hash table (the Hash scheme), and
its cumulative distribution function is FX(x). Using n parallel hash tables and bucket
selection in the MultiHash scheme, the number of examined edges is equal to X̂ =
min (X1, . . . , Xn). When Xi, i = 1, . . . , n are independent and identically distributed
random variables, X̂ has a PDF

f̂X̂(x) = nfX(x)(1 − FX(x))n−1, (1)

according to the order statistics [David and Nagaraja 2003]. Compared with fX(x),
f̂X̂(x) has a gain

g(x) = n · (1 − FX(x))n−1. (2)
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At small x, FX(x) approaches 0 and g(x) approaches n. On the other hand, at large x,
FX(x) approaches 1 and g(x) approaches 0. Therefore, increasing the number of hash
tables to n amplifies the probability at small x but decreases the probability at large x.
This effectively decreases the tail of the distribution of the number of edges examined
per point.

Let E(.) be the expectation operation. With some specific distributions, both E(X) and
E(X̂) can be computed, and we can learn the effect of bucket selection. Here, we consider
three typical distributions: exponential distribution (severe imbalance among buckets),
linear distribution (moderate imbalance among bucket), and uniform distribution (no
imbalance).

In the case of exponential distribution, fX,e(x) = exp(−λx), x ≥ 0 with a parameter
λ. Then, we have Ee = E(X) = 1/λ, FX,e(x) = 1 − exp(−λx) and Pr(X > x) = exp(−λx).
The distribution of X̂ = min(X) has a simple form, as follows:

Pr(X̂ > x) = Pr(X1 > x, . . . , Xn > x) =
n∏

i=1

exp(−λx) = exp (−(nλ) · x). (3)

In this way, X̂ is also an exponential distribution, but with an expectation 1
nλ

= Ee · 1
n.

In the case of linear distribution, fX,l(x) = 2
L(1 − x

L), 0 ≤ x ≤ L. Then, we have
El = E(X) = L

3 and FX,l(x) = 2x
L − x2

L2 . Accordingly, X̂ = min(X) has a distribution

f̂X̂,l(x) = n · 2
L

(
1 − x

L

)
·
(

1 − 2x
L

+ x2

L2

)n−1

= 2n
L

(
1 − x

L

)2n−1
, 0 ≤ x ≤ L, (4)

and its expectation is
∫ L

0
x · 2n

L

(
1 − x

L

)2n−1
dx = 2nL

∫ 1

0
x(1 − x)2n−1dx = L

2n + 1
= El · 3

2n + 1
. (5)

In the case of uniform distribution, fX,u(x) = 1
L, 0 ≤ x ≤ L, Eu = E(X) = L

2 , and
FX,u(x) = x

L. X̂ = min(X) has a distribution

f̂X̂(x) = n
L

(
1 − x

L

)n−1
, 0 ≤ x ≤ L, (6)

with an expectation
∫ L

0
x · n

L

(
1 − x

L

)n−1
dx = nL

∫ 1

0
x(1 − x)n−1dx = L

n + 1
= Eu · 2

n + 1
. (7)

The ratio E(X)/E(X̂) is defined as the average gain of bucket selection. This average
gain is equal to n for exponential distribution, (2n + 1)/3 for linear distribution, and
(n+1)/2 for uniform distribution. It increases with n, and gets larger as the distribution
gets closer to an exponential (the imbalance among buckets becomes more severe).

This analysis is based on the assumption of independence. Actually, the number of
edges inside buckets in parallel hash tables may be correlated because the difference
between rotation angles of polygons decreases at large n. This correlation will degrade
the average gain of bucket selection. On the other hand, two hash tables can be effi-
ciently implemented by leveraging the x and y coordinates, but a larger n requires us
to rotate polygons. Therefore, n is chosen to be 2 as a tradeoff between the average gain
of bucket selection and the system overhead of building hash tables.
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3.4.2. Effect of Sorting Edges. In the ideal Hybrid scheme, where edges are sorted in all
buckets, the number of examined edges is equal to X = log2(X̂), and its distribution is

f X(x) = f̂X̂(2x) · 2x log 2. (8)

Compared with f̂X̂(x), the curve of f X(x) is compressed along the horizontal axis and
amplified in the vertical direction. This effectively removes the long tail of the distri-
bution of the number of edges.

4. EXPERIMENTAL RESULTS

We used two datasets in the evaluation. One is provided by the ACM GIS Cup 20136,
which includes two point files (Point500 with 39,289 instances of 500 points, Point1000
with 69,619 instances of 1,000 points), two polygon files (Poly10 with 30 instances of
10 polygons, Poly15 with 40 instances of 15 polygons), and the ground truth of the
INSIDE detection under different combinations of inputs. Points constantly change
their positions and have different instances. The sequence number for each instance of
point or polygon is used as the timestamp. The distances between adjacent instances
of a point vary with time and are different for different points. The distances have an
average of 810.0m and a standard deviation 755.2m for Point500, and an average of
862.4m and a standard deviation 801.9m for Point1000. The other dataset is built from
the data downloaded from OpenStreetMap,7 which contains polygons for all land areas
in the world (i.e., continents and islands). We constructed four polygon files, Poly-OSM1
to Poly-OSM4, each with 200 instances of 20 polygons. On this basis, we created point
files (Point-OSM1 to Point-OSM4, each with 80,000 instances) by randomly selecting
points from the MBR area of each polygon. We note that a real system may contain a
very large number of geo-fences. It is possible to apply our method to such a system
in a distributed way as follows: Geo-fences are divided into groups based on their
geographic areas, and each group of geo-fences can be processed by a separate server
running our method.

In the evaluation, we compare five methods: Base (the basic scheme exploiting R-
Tree but no hash for the INSIDE detection), Hash, MultiHash, SortEdge, and Hybrid.
All algorithms are programmed using Visual Studio Professional C++ 2012. MultiHash
and Hybrid are implemented with two tables, directly using x (rotation angle = 0) and
y (rotation angle = 90 degree) coordinates.

We conducted evaluations using a desktop PC with Intel Core i7 CPU (3.4GHz)
and 64-bit Windows 7. In all experiments, 100% accuracy is achieved. The proposed
scheme shifts some computation cost from the refining stage to system spare time,
where hash tables are built for polygons. To illustrate the cost in different stages, we
separately evaluated (i) the time taken to update polygons (converting coordinates
from Geography Markup Language format, updating the R-tree of MBRs, and building
hash tables), (ii) the time taken in the filtering stage, and (iii) the time taken in the
refining stage by the CN algorithm. Because it is difficult to accurately measure the
per-point pairing time, the total time for pairing a point file with a polygon file is used
instead. The execution time is measured by the function QueryPerformanceCounter8 in
the Windows environment. The experiment is repeated 10,000 times. On this basis, we
compute the average and standard deviation of execution times and their distributions.
The storage of each scheme is also evaluated by measuring how many times an edge is
stored in the hash tables.

6http://dmlab.cs.umn.edu/GISCUP2013/downloads.php.
7http://openstreetmapdata.com/data/land-polygons.
8http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx.
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Table II. Total Time Consumed in Pairing Point500 and Poly10 (time unit: ms)

Updating Polygon Filtering (R-Tree) Refining (CN Algorithm) Storage
Average Std Average Std Average Std Average

Base 1.378 0.073 1.002 0.026 8.451 0.508 1
Hash 2.108 0.128 1.001 0.023 1.280 0.057 2.19
MultiHash 2.837 0.096 1.001 0.026 1.186 0.079 4.31
SortEdge 8.031 0.311 1.005 0.029 1.218 0.075 3.35
Hybrid 5.022 0.320 1.009 0.099 1.141 0.080 5.44

Table III. Total Time Consumed in Pairing Point1000 and Poly10 (time unit: ms)

Updating Polygon Filtering (R-Tree) Refining (CN Algorithm) Storage
Average Std Average Std Average Std Average

Base 1.361 0.087 1.641 0.096 12.891 0.653 1
Hash 2.093 0.121 1.623 0.077 2.020 0.073 2.19
MultiHash 2.836 0.119 1.615 0.082 1.849 0.118 4.31
SortEdge 8.040 0.307 1.723 0.092 1.922 0.116 3.35
Hybrid 5.045 0.173 1.620 0.080 1.812 0.098 5.44

Table IV. Total Time Consumed in Pairing Point500 and Poly15 (time unit: ms)

Updating Polygon Filtering (R-Tree) Refining (CN Algorithm) Storage
Average Std Average Std Average Std Average

Base 1.783 0.035 1.150 0.057 9.002 0.308 1
Hash 2.814 0.085 1.131 0.049 1.430 0.069 2.20
MultiHash 3.601 0.196 1.129 0.055 1.419 0.069 4.33
SortEdge 10.178 0.516 1.178 0.073 1.412 0.052 3.45
Hybrid 6.391 0.311 1.134 0.053 1.292 0.091 5.56

4.1. Results on the Dataset of GIS Cup’13

Results under different combinations of points and polygon files are shown in Tables II–
V, and the components of computation costs are listed here:

—Updating polygons in system spare time. In the Base scheme, there is no hash table,
and the time of updating polygons is short. As for each of the other schemes, the
average time for updating polygons is almost the same for Tables II and III and for
Tables IV and V. In the SortEdge scheme, sorting edges in all buckets takes much
more time than in other schemes. By comparison, Hybrid takes medium time by only
sorting edges in some of the buckets.

—Filtering stage. The filtering stage is the same for all schemes, so is the average time.
—Refining stage. As for the average time taken for the CN algorithm, the Base al-

gorithm is most time-consuming, about 10ms. Using indexing in Hash, MultiHash,
SortEdge, and Hybrid reduces this time to about 1–2ms. The Hybrid scheme takes the
least time for the CN algorithm. Here, the SortEdge scheme is more time-consuming
than Hybrid because it takes time to locate a bucket with an interval index even
when there are few edges in the bucket. Although there is no big difference between
Hash and other indexing schemes (MultiHash, SortEdge, and Hybrid) in comparing
the total time of CN, their worst-case time is quite different, as reflected in Figures 4
and 8.

The numbers of pairs in the filtering and refining stage are listed in Table VI. The
time taken for each pair is approximately the total time divided by the number of
pairs; for example, the filtering time and refining time per-pair for joining Point500
with Poly15 via Hybrid are equal to 1.134ms/589335 and 1.292ms/19420, respectively.
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Table V. Total Time Consumed in Pairing Point1000 and Poly15 (time unit: ms)

Updating polygon Filtering (R-Tree) Refining (CN Algorithm) Storage
Average Std Average Std Average Std Average

Base 1.785 0.053 2.115 0.128 15.867 0.272 1
Hash 2.824 0.087 2.038 0.097 2.532 0.081 2.20
MultiHash 3.628 0.180 2.030 0.090 2.346 0.148 4.33
SortEdge 10.354 0.627 2.241 0.040 2.359 0.148 3.45
Hybrid 6.469 0.346 2.044 0.104 2.280 0.127 5.56

Table VI. Number of Pairs in the Filtering Stage (Join between Point and MBR)
and Refining Stage (Join between Point and Polygon)

Point500, Poly10 Point500, Poly15 Point1000, Poly10 Point1000, Poly15
Filtering 392,890 589,335 696,190 1,044,285
Refining 16,858 19,420 26,398 32,754

Fig. 11. CCDF of the time taken for the CN algorithm in different hashing schemes (based on the dataset
of GIS Cup’13).

Although only about 3% of pairs remain in the refining stage, the refining stage of Base
takes more time than the filtering stage because each polygon has hundreds of edges
and the plain CN algorithm is time-consuming. Using hash schemes reduces the time
in the refining stage to a value comparable to that of the filtering stage.

All the hashing schemes reduce the time of the CN algorithm at the cost of increased
storage because each edge may be repeatedly stored in several adjacent buckets. Here,
each edge is stored once in the Base scheme, nearly 2.2 times in Hash, 4.3 times in
MultiHash, 3.4 times in SortEdge, and 5.5 times in Hybrid.

The CCDF results corresponding to Table IV are shown in detail in Figure 11 (Part of
the left plot is amplified in the right side) and Figure 12. The difference in the total time
of the CN algorithm among the four hashing schemes is not very large. By contrast,
there is a clear distinction in the time used to build hash tables in Figure 12. Only
a few buckets are sorted in the Hybrid scheme. Therefore, its time for building hash
tables is between those of MultiHash and SortEdge.

4.2. Results on the Dataset of OpenStreetMap

We also did experiments on the dataset constructed from the data of OpenStreetMap.
Results under different combinations of points and polygon files are shown in
Tables VII–X. These results show a similar trend as those in Tables II–V, although
the time gets larger due to more polygons and points involved in the computation.

There are also several minor differences here: (i) As for the Hash scheme, the per-
edge storage is only around 1.2 in Tables VII–X, compared with 2.2 in Tables II–V. This
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Fig. 12. CCDF of the time taken for building hash tables in different hashing schemes (based on the dataset
of GIS Cup’13).

Table VII. Total Time Consumed in Pairing Point-OSM1 and Poly-OSM1 (time unit: ms)

Updating Polygon Filtering (R-Tree) Refining (CN Algorithm) Storage
Average Std Average Std Average Std Average

Base 11.249 0.239 2.288 0.108 14.297 0.537 1
Hash 15.894 0.343 2.256 0.069 3.201 0.118 1.17
MultiHash 20.050 0.522 2.257 0.071 2.250 0.056 2.29
SortEdge 72.275 3.261 2.279 0.097 1.531 0.121 4.13
Hybrid 40.943 2.212 2.260 0.086 1.802 0.099 4.42

Table VIII. Total Time Consumed in Pairing Point-OSM2 and Poly-OSM2 (time unit: ms)

Updating Polygon Filtering (R-Tree) Refining (CN Algorithm) Storage
Average Std Average Std Average Std Average

Base 11.460 0.537 2.413 0.134 14.896 0.868 1
Hash 15.972 0.481 2.264 0.081 3.694 0.206 1.18
MultiHash 20.163 0.697 2.264 0.081 2.341 0.139 2.31
SortEdge 80.355 2.844 2.356 0.136 1.614 0.090 4.89
Hybrid 45.587 2.152 2.266 0.086 1.817 0.091 4.93

Table IX. Total Time Consumed in Pairing Point-OSM3 and Poly-OSM3 (time unit: ms)

Updating Polygon Filtering (R-Tree) Refining (CN Algorithm) Storage
Average Std Average Std Average Std Average

Base 11.236 0.228 2.307 0.123 14.267 0.515 1
Hash 15.888 0.276 2.261 0.075 2.982 0.174 1.28
MultiHash 20.126 0.651 2.260 0.076 2.079 0.125 2.45
SortEdge 79.683 1.702 2.295 0.111 1.636 0.124 4.84
Hybrid 39.839 1.223 2.255 0.071 2.028 0.090 4.62

Table X. Total Time Consumed in Pairing Point-OSM4 and Poly-OSM4 (time unit: ms)

Updating Polygon Filtering (R-Tree) Refining (CN Algorithm) Storage
Average Std Average Std Average Std Average

Base 11.528 0.614 2.273 0.100 15.871 0.323 1
Hash 16.070 0.658 2.248 0.057 3.169 0.062 1.23
MultiHash 20.370 0.940 2.249 0.055 2.065 0.116 2.40
SortEdge 80.336 2.817 2.267 0.084 1.622 0.103 4.39
Hybrid 42.392 2.641 2.247 0.049 1.920 0.131 4.53
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Fig. 13. CCDF of the time taken for the CN algorithm in different hashing schemes (based on the dataset
of OpenStreetMap).

Fig. 14. CCDF of the time taken for building hash tables in different hashing schemes (based on the dataset
of OpenStreetMap).

indicates that the two datasets have different distributions of the number of edges per
bucket, and more edges tend to be located in fewer buckets in the second dataset. As
a result, the performance gap between MultiHash and Hash, due to bucket selection,
gets larger on the second dataset than the first one. (ii) SortEdge achieves the least
time of the CN algorithm. This can be explained as follows: When there are many edges
in buckets, the CN algorithm via binary search in a bucket reduces more time than
the increased time taken to locate a bucket. Under most cases, Hybrid achieves similar
performance as SortEdge in terms of the time for the CN algorithm, but with much
less time for building hash tables.

The CCDF results corresponding to Table VIII are shown in detail in Figure 13 and
Figure 14. The difference in the total time of the CN algorithm among the four hashing
schemes is clear in this case. The performance of Hybrid approaches that of SortEdge,
but Hybrid takes much less time for updating the hash tables. To better understand
the performance difference on the two datasets, we also show the distribution of the
number of edges examined per point on the second dataset in Figure 15. There are more
edges in each buckets compared with Figure 4, and this explains why sorting edges
(SortEdge) is more effective than bucket selection (MultiHash) on the second dataset.

Based on the two datasets, we learn that the refining stage (the CN algorithm) can
be accelerated at the cost of increased system overhead (e.g., building hash tables for
polygons) in the spare time and the cost of more storage. SortEdge and Hybrid are good
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Fig. 15. CCDF of the number of edges examined per point in different hashing schemes (based on the
dataset of OpenStreetMap).

choices when polygons in the system are seldom updated. On the other hand, when poly-
gons are frequently updated, MultiHash and Hybrid will be better. In general, Hybrid
achieves a better tradeoff between real-time pairing of points and polygons (by acceler-
ating the CN algorithm) and system overhead (building hash tables), compared with
the other hashing schemes. Although the performance of bucket selection and sorting
edges varies with the dataset, combining the two in Hybrid makes it possible to achieve
good performance on both datasets and effectively reduce the worst-case response time.
These schemes are proposed for geo-fencing applications with complex polygons, where
positions of points are changed much more frequently than those of polygons. This
justifies the system overhead of building hash tables for polygons. When polygons are
simple (e.g., the number of edges is below a threshold) or polygons change at a fre-
quency comparable to that of points, it might be better to directly perform the plain CN
algorithm. When there are both simple and complex polygons in the database, a flag
can be assigned to each polygon indicating whether indexing is used for the polygon.

5. CONCLUSION

Based on pairing points with polygons, a system supporting geo-fencing triggers an
action when users enter or leave predefined geo-fences. The efficient implementation
of geo-fencing decides the response performance of large-scale real-time applications. In
this article, we studied the distribution of the number of edges examined per point and
the properties of edges inside a bucket. On this basis, we suggested a hybrid hashing
policy to organize edges of polygons in buckets and an efficient implementation of the
crossing number algorithm that combines bucket selection and in-bucket binary search.
Extensive analyses and evaluations on real-world datasets confirm that the proposed
algorithm helps effectively (i) reduce the pairing cost in terms of both average time
and the distribution and (ii) achieve a better tradeoff between real-time pairing points
with polygons and system overhead. In the future, we will construct larger databases
to perform large-scale evaluations.
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